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Abstract: Single transverse-spin asymmetries have been studied intensively both in ex-

periment and theory. Theoretically, two factorization approaches have been proposed. One

is by using transverse-momentum-dependent factorization and the asymmetry comes from

the so called Sivers function. Another is by using collinear factorization where the non-

perturbative effect is parameterized by a twist-3 hadronic matrix element. However, the

factorized formulas for the asymmetries in the two approaches are derived at hadron level

formally by diagram expansion, where one works with various parton density matrices of

hadrons. If the two factorizations hold, they should also hold at parton level. We examine

this for Drell-Yan processes by replacing hadrons with partons. By calculating the asym-

metry, Sivers function and the twist-3 matrix element at nontrivial leading order of αs, we

find that we can reproduce the result of the transverse-momentum-dependent factorization.

But we can only verify the result of the collinear factorization partly. Two formally derived

relations between Sivers function and the twist-3 matrix element are also examined with

negative results.
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1. Introduction

Single transverse-spin asymmetries have been observed in many experiments [1 – 5]. To

generate a single transverse-spin asymmetry(SSA) it requires nonzero absorptive part of

scattering amplitude and helicity-flip interactions. This indicates that the asymmetries

are T -odd effects. The study of SSA of hadron scattering provides a new tool to explore

hadron structure and nonperturbative properties of QCD. In some cases like production

of a heavy quark with transverse polarization, SSA can be studied by using perturbative

QCD directly [6]. However, in the cases studied in experiment, in which an initial hadron is

transversely polarized and is involved in the scattering, it is not possible to use perturbative

QCD directly. To study SSA of hadronic processes two factorization approaches have been

proposed. One is by using transverse-momentum-dependent(TMD) factorization, where

one takes transverse momenta of partons in hadrons into account. Another is the collinear

factorization. An up-to-date review about studies of SSA can be found in [7]. In this work

we will focus on the two approaches in Drell-Yan processes.

In the approach of TMD factorization, the origin of SSA arises from a correlation

between the transverse spin of the initial hadron and the transverse momentum of par-

tons in the hadron. This correlation is parameterized by Sivers function [8, 9]. In this

approach the effect of helicity-flip interactions and the T -odd effect are contained in the

Sivers function. The helicity-flip of a initial hadron can happen because of orbital angular

momenta of partons. This can be seen clearly in terms of light-cone wave functions [10].

Hence SSA in this approach is sensitive to orbital angular momenta of partons. The T -odd

effect in Drell-Yan processes comes from the initial state interaction, in contrast to semi-

inclusive DIS where T -odd effects come from final state interactions. We note here that so

far TMD factorization has been examined carefully only for physical quantities which do
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not contain T -odd effects [11 – 15]. TMD parton distributions entering the factorization

for these physical quantities can be defined with QCD operators consistently. Intensive

efforts in theory has been spent to study how to consistently define or interpret Sivers

function as a parton distribution which is gauge invariant and contains initial- or final

state interactions [9, 16 – 19]. Through these studies the role of gauge links used to define

Sivers function becomes clear and it shows that the Sivers function in Drell-Yan processes

is related to that in semi-inclusive DIS. The approach of TMD factorization has a simple

parton-model interpretation. Because of this, SSA has been studied extensively in terms

of Sivers functions [20 – 25]. These functions have been also studied with models [26 – 29].

The approach of TMD factorization has the limitation that it is only applicable in certain

kinematic regions, e.g., in a Drell-Yan process the region is where the transverse momentum

q⊥ of the lepton pair is much smaller than its invariant mass Q.

In the approach of collinear factorization SSA is factorized with twist-3 matrix ele-

ments [30 – 32], or called ETQS matrix elements. In this approach the twist-3 matrix ele-

ments, or the corresponding parton distribution functions defined with twist-3 operators of

QCD, contain only the effect of helicity-flip interactions which is taken as nonperturbative

effect. The nonzero absorptive part or T -odd effect is not contained in the twist-3 matrix

elements. It is generated by poles of parton propagators in hard scattering. The twist-3

matrix elements characterize the correlation between quarks and gluons inside the trans-

versely polarized hadron. Therefore, in this approach SSA is sensitive to the correlation.

From this point of view the approach of collinear factorization seems different than the

approach of TMD factorization. However, recent progress shows that the two approaches

can be unified in the kinematic region of q⊥ ≪ Q [33]. We note here that the approach of

collinear factorization is applicable for the whole kinematical region if Q2 is enough large.

The fact that the two approaches in the region of q⊥ ≪ Q indicates that there exists a rela-

tion between Sivers function and twist-3 matrix elements. Such a relation has been found

in [33]. There also exists another relation between Sivers function and twist-3 matrix ele-

ments [19, 34]. Applications of the collinear factorization for SSA can be found in [35 – 37].

It should be noted that in the two approaches the factorization is derived or proposed

rather formally in the sense that one works at hadron level by using the diagram expan-

sion. In the expansion one usually divides a given diagram with hadrons into various parts.

Among these various parts, one consists only of partons. In other parts hadrons are in-

volved. These parts represent nonperturbative effects related to the hadrons and they are

parameterized by various parton density matrices of hadrons. It should be also noted that

QCD factorizations, if they are proven, are general properties of QCD Green functions.

It means that the two factorization approaches, if they hold, they should also hold by

replacing hadrons with partons. It is the purpose of the study presented here to show

how SSA in Drell-Yan processes can be factorized in two approaches by replacing hadrons

with partons and to examine the two relations between Sivers function and twist-3 matrix

elements. Our study is performed at leading order of αs. In order to generate SSA in

Drell-Yan processes and nonzero q⊥, there must be exchange of two gluons at the leading

order. It results in that SSA at parton level is already at order of α2
s in comparison with

the leading order of the unpolarized cross-section which is at α0
s. Hence it is nontrivial to
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show the factorizations at leading order. In this work we will take Drell-Yan process as an

example. We replace the two hadrons in the initial state with a quark q and an antiquark

q̄. In order to have helicity-flip we keep the quark mass as nonzero and every quantity is

calculated at leading power of m. The perturbative coefficients in the factorization formu-

las do not depend on the quark mass m. It turns out that the proposed TMD factorization

of SSA holds at the parton level, while only a part of results of the proposed collinear

factorization for SSA can be verified with our partonic results. We also find that the two

relations between Sivers functions and twist-3 matrix elements do not hold in general. The

two relations need to be modified.

Our paper is organized as the following: In section 2 we give our notations for Drell-Yan

process and the formulas of two factorization approaches of SSA. In section 3 we present

our result of Sivers function with a parton state. SSA of Drell-Yan process with the parton

state is calculated in section 4. Section 5 contains the result of twist-3 matrix element with

the parton state, where we show that only a part of our result matches the formula of the

collinear factorization of SSA. We summarize our study in section 6.

2. Notations and factorization formulas

we consider the Drell-Yan process:

hA(PA, s) + hB(PB) → γ∗(q) +X → ℓ− + ℓ+ +X, (2.1)

where hA is a spin-1/2 hadron with the spin-vector s. We will use the light-cone coordi-

nate system, in which a vector aµ is expressed as aµ = (a+, a−,~a⊥) = ((a0 + a3)/
√

2, (a0 −
a3)/

√
2, a1, a2) and a2

⊥ = (a1)2 + (a2)2. We also introduce two light-cone vectors: nµ =

(0, 1, 0, 0) and lµ = (1, 0, 0, 0). We take a light-cone coordinate system in which the mo-

menta and the spin are:

Pµ
A,B = (P+

A,B , P
−
A,B , 0, 0), sµ = (0, 0, ~s⊥). (2.2)

hA moves in the z-direction, i.e., P+
A is the large component. The spin of hB is not observed.

The invariant mass of the observed lepton pair is Q2 = q2. The relevant hadronic tensor is

defined as:

W µν =
∑

X

∫

d4x

(2π)4
eiq·x 〈hA(PA, s⊥), hB(PB)|q̄(0)γνq(0)|X〉〈X|q̄(x)γµq(x)

×|hB(PB), hA(PA, s⊥)〉, (2.3)

and the differential cross-section is determined by the hadronic tensor as:

dσ

dQ2d2q⊥dq+dq−
=

4πα2
emQ

2
q

3SQ2
δ(q2 −Q2)

(

qµqν
q2

− gµν

)

W µν . (2.4)
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We are interested in the kinematical region where q2⊥ ≪ Q2. The hadronic tensor at

leading twist accuracy has the structure:

W µν = −gµν
⊥ W

(1)
U +

(

gµν
⊥ − 2

qµ
⊥q

ν
⊥

q2⊥

)

W
(2)
U

−gµν
⊥ ǫαβ

⊥ s⊥αq⊥βW
(1)
T +

(

s⊥αǫ
αµ
⊥ qν

⊥ + s⊥αǫ
αν
⊥ qµ

⊥ − gµν
⊥ ǫαβ

⊥ s⊥αq⊥β

)

W
(2)
T

+q⊥α

(

ǫαµ
⊥ qν

⊥ + ǫαν
⊥ qµ

⊥

)

~q⊥ · ~s⊥W (3)
T + · · · (2.5)

with the notation:

gµν
⊥ = gµν − nµlν − nν lµ, ǫµν

⊥ = ǫαβµν lαnβ. (2.6)

In the above, we only give the structures symmetric in µν. W
(i)
T (i = 1, 2, 3) represent T -

odd effect related to the spin. W
(1,2)
U are responsible for unpolarized cross-sections. W

(1)
T

contributes to SSA in the region q2⊥ ≪ Q2

dσ(~s⊥)

dQ2d2q⊥dq+dq−
− dσ(−~s⊥)

dQ2d2q⊥dq+dq−

=
16πα2

emQ
2
q

3SQ2
δ(q2 −Q2)ǫαβ

⊥ s⊥αq⊥βW
(1)
T

(

1 + O(q2⊥/Q
2)

)

. (2.7)

We will focus on W
(1)
T to see if it can be factorized.

In the kinematical region Q2 ≫ q2⊥ ∼ Λ2
QCD the TMD factorization can be performed

for W
(1)
T based on the diagram expansion. The result at tree-level can be written as a

convolution with Sivers function and TMD parton distribution [13, 33]:

W
(1)
T (z1, z2, q⊥)=

1

Nc

∫

d2k1⊥d
2k2⊥

~q⊥ ·~k1⊥

q2⊥
q⊥(z1, k1⊥)q̄(z2, k2⊥)δ2(~k1⊥+~k2⊥−~q⊥)H, (2.8)

where the variables z1,2 are defined as: q+ = z1P
+
A and q− = z2P

−
B . H is a perturbative

coefficient, i.e., H = 1+O(αs). Beyond tree-level one has to implement a soft factor repre-

senting effects of soft-gluon radiation. In the above q⊥ is Sivers function. To define it with

QCD operators we introduce a gauge link along the direction u with uµ = (u+, u−, 0, 0):

Lu(−∞, z) =

[

P exp

(

−igs

∫ 0

−∞

dλu ·G(λu+ z)

)]†

. (2.9)

The Sivers function relevant for Drell-Yan process is defined in the limit u+ ≪ u− [9, 13, 18]:

q⊥(x, k⊥)εµν
⊥ s⊥µk⊥ν=

1

4

∫

dz−d2z⊥
(2π)3

e−ik·z{〈PA, ~s⊥|ψ̄(z)L†
u(−∞, z)γ+Lu(−∞, 0)ψ(0)|PA, ~s⊥〉

−(~s⊥ → −~s⊥)}, (2.10)

with zµ = (0, z−, ~z⊥). x is defined as k+ = xP+
A . Beside the renormailzation scale µ, Sivers

function also depends on the parameter:

ζ2 =
2u−

u+

(

P+
)2
. (2.11)
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The limit u+ ≪ u− is to be understood that we discard all contributions in eq. (2.9)

which are zero with ζ2 → ∞. The definitions of other TMD parton distributions of a

unpolarized hadron can be found in [13, 14]. In the TMD factorization of SSA one takes

transverse momenta of incoming partons into account. The T -odd effect and spin-flip effect

are parameterized by Sivers function. It should be noted that the TMD factorization can

be extended to the region Q2 ≫ q2⊥ ≫ Λ2
QCD.

A collinear factorization can also be performed for SSA or W
(1)
T , where the T -odd effect

comes from poles of partons in the hard scattering and the spin-flip effect is parameterized

with the twist-3 matrix element which is defined as [30, 31]:

TF (x1, x2)s
ν
⊥ =

gs

2

∫

dy1dy2

4π
e−iy2(x2−x1)P+−iy1x1P+

ǫµν
⊥

·
{

〈PA, ~s⊥|ψ̄(y1n)γ+G+
µ(y2n)ψ(0)|PA, ~s⊥〉 − (~s⊥ → −~s⊥)

}

. (2.12)

In the above we have suppressed gauge links between operators. These gauge links are

defined with the vector n and make the above definition gauge invariant. One can also

view the definition as given in the gauge n ·G = 0. With the twist-3 matrix element SSA

or W
(1)
T takes the following factorized form [33]:

W
(1)
T ∼ q̄ ⊗Hc ⊗ TF , (2.13)

where q̄ is the standard parton distribution, Hc is a coefficient function calculated pertur-

batively. Its leading order is at αs. Details about the above result can be found in [33].

It should be noted that the above collinear factorization is derived for the kinematical

region with Q2 ≫ Λ2
QCD and q2⊥ ≫ Λ2

QCD. It should also be valid for the region with

Λ2
QCD ≪ q2⊥ ≪ Q2. In this region the two factorization approaches apply. It has been

shown both factorizations give the same results [33] in that region. Hence a relation be-

tween Sivers function q⊥ and the twist-3 matrix element TF can be found.

As discussed in the introduction the derivation of these factorization formulas is based

on the diagram expansion, in which one works with hadronic states by introducing various

parton density matrices of hadrons. If these factorization formulas hold, it should also

hold if we replace hadrons with partons. It is the task of the subsequent sections to check

these factorizations and different relations between Sivers function and the twist-3 matrix

element by replacing hadrons with partons.

3. Sivers function with a quark-state

We replace in the definition of Sivers function the hadron hA with a quark q. The quark has

the momentum pµ = (p+, p−, 0, 0) with p2 = m2. The finite quark mass m will introduce

effects of spin-flip. In order to have T -odd effect, exchanges of virtual gluons should present

in the amplitude. Also, at least one gluon must be in the intermediate state to generate

nonzero k⊥. With these considerations one can find the possible contributions to Sivers

function at leading order of αs. These contributions are given by diagrams in figure 1.,

where the contributions are represented as the interference of amplitudes. The amplitudes

– 5 –
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Abs +

a b c

+ + +

d e

+
+h.c.

g h

Figure 1: Diagrams for the contributions to Sivers function. The double lines represent the gauge

link.

Fig.1b

Abs

Abs

Fig.1c

= 1
2

= 1
2 +1

2

Figure 2: The absorptive part of figure 1b and figure 1c. The broken line is the cut.

of figure 1a to figure 1e can have absorptive parts. The interference of these absorptive parts

with the amplitudes represented with figure 1g and figure 1h will give nonzero contributions

to Sivers function.

At first look there are many diagrams contributing. However, the Sivers function

q⊥(x, k⊥) is defined in the limit u− ≪ u+. In this limit one can easily show that only the

interference of figure 1b and figure 1c with figure 1g are nonzero, other interferences are zero.
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The absorptive parts of amplitudes can be obtained with the standard Cutkosky cutting

rule and they can be represented with cut diagrams. In figure 2 we give the diagrams for

the absorptive part of figure 1b and figure 1c. In determining physical cuts one should note

that the energy flow of each particle crossing the cut should be in the same direction. In our

case, the gauge link represents an incoming particle with an infinity-large −-component of

its momentum. Therefore, the energy flow of the gauge links in figure 2 are from the right

side to the left side. Keeping this in mind we find only one cut diagram for figure 1b with

a physically allowed cut. For figure 1c there are two possible cuts. A cut cutting a real

particle has no effect. According to the Cutkosky cutting rule one should replace all i’s of

propagators and vertices with −i in the left-upper part of the cut diagrams in figure 2. In

this part of the cut diagrams the joining point of the gauge link and the quark line should

be taken as a vertex, reflecting the fact that the particle represented by the gauge link

annihilates the particle represented by the quark line. Hence, this joining point or vertex

contributes an extra minus sign when evaluating the absorptive part of the cut diagrams.

This extra minus sign can also be verified by a direct calculation of the interference of the

complex conjugated figure 1b or figure 1c with the complex conjugated figure 1g.

The interference of figure 1b with figure 1g can be written as:

q⊥(x, k⊥)εµν
⊥ s⊥µk⊥ν |bg=− 1

4Nc
g4
sf

abc 1

2

∫

d4kg

(2π)4
d4q

(2π)4
(2π)δ(k2

g )δ(k+−p++k+
g )δ2(~k⊥+~kg⊥)

· −i2πδ(u · q)
(p− kg)2 −m2 − iε

· −i2πδ((p − kg − q)2 −m2)

(q + kg)2 + iε
· 1

q2 + iε

·ū(p, s⊥)γµ(γ ·(p−kg)+m)γ+(γ ·(p−kg−q)+m)γρT
aT bT cu(p, s⊥)

· [(−kg+q)ρuµ+(−2q−kq)
µuρ+(2kg+q) · ugµρ]−(s⊥→−s⊥) , (3.1)

where kg is the momentum of the gluon in the intermediate state and q the momentum of

the gluon emitted from the gauge link. It is straightforward to calculate the contribution

under the limit u+ → 0. We have:

q⊥(x, k⊥)|bg =
mα2

s

16π2
(N2

c − 1)
x(1 − x)

k2
⊥ + (1 − x)2m2

1

k2
⊥

ln

(

(1 − x)2m2

k2
⊥ + (1 − x)2m2

)

.

The absorptive part of figure 1c receives contributions from two cut diagrams in fig-

ure 2. It is easy to show that the contributions from the two cut diagrams cancel each

other. Therefore the only nonzero contribution is from figure 1b. The final result of Sivers

function is:

q⊥(x, k⊥) =
mα2

s

8π2
(N2

c − 1)
x(1 − x)

k2
⊥ + (1 − x)2m2

1

k2
⊥

ln

(

(1 − x)2m2

k2
⊥ + (1 − x)2m2

)

. (3.2)

We note that the same diagrams in figure 1 will also contribute to Sivers function in

DIS, where the gauge link is pointing to the future. This gauge link then represents an

outgoing particle with an infinity-large −-component of its momentum, hence the energy

flow along the gauge link is reversed. This will lead to cut diagrams other than those

given in figure 2. It turns out that Sivers function for DIS calculated with figure 1 is the

same as the above, except a sign difference as expected. We also point out that there
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(f) (g)

+ +h.c.

Figure 3: Diagrams for the contributions to the hadronic tensor W
(1)
T

.

can be a difference in calculations of Sivers function or SSA between different ways to

generate absorptive parts. In the collinear expansion imaginary parts of amplitudes are

generated by poles of parton propagators. In general the generated imaginary parts can

not be the absorptive parts, because these poles do not necessarily correspond to physical

cuts, although the same results may be obtained. The difference and SSA in DIS will be

studied in a separate publication.

4. SSA of Drell-Yan processes

In this section we will calculate the part of the hadronic tensor relevant to SSA. We replace

hA with a quark and hB with an antiquark. We consider SSA in the process:

q(p1, s) + q̄(p2) → γ∗(q) +X → ℓ− + ℓ+ +X, (4.1)

where the quark q is polarized with the spin vector s. By the requirement that there is a

T -odd effect and nonzero q⊥, we find that at leading order of αs the possible contributions

to SSA are given by diagrams in figure 3. These diagrams are of the hadronic tensor and

the black dot indicates the insertion of the electric current. We denote the momentum of

the gluon in the intermediate state as kg. It will be very tedious to obtain full results from

these diagrams. However, what we need is the leading contribution in the limit q2⊥ ≪ Q2. It

will be useful by doing the expansion in q2⊥/Q
2 first and then to perform the loop integral.

A convenient way for the expansion is to analysis different regions of the loop momentum.

For doing the expansion we note that each contribution from figure 3 can be written

in a generic form

∫

d4k

(2π)4
d4kg

(2π)4
(2π)δ(k2

g )(2π)4δ4(p1 + p2 − q − kg)
1

D1D2D3D4D5
· Tr [· · · ] , (4.2)

– 8 –
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where k is the momentum of the virtual gluon. In each contribution there are five propaga-

tors, their denominators are denoted as Di(i = 1, 2, . . . , 5). The nominator represented in

the above as Tr [· · · ] is a trace of product of γ-matrices. We scale the momentum ~kg⊥ = −~q⊥
as at order of λ. and expand each contribution in λ. It is clearly that the leading order

contribution in λ comes when the denominators of all propagators are at order of λ2. The

power-counting is not affected by taking a cut to cut propagators. The requirement that

all denominators in figure 3a to figure 3e are at order of λ2 gives the following scaling of

loop momenta:

kµ = (λ2, λ2, λ, λ), kµ
g = (k+

g , k
−
g , λ, λ), (4.3)

where one of the component k+
g or k−g is at order of λ2. It depends on diagrams. However,

some contributions can not have all denominators at order of λ2, e.g., the interference

terms of figure 3a or figure 3c with figure 3g, the interference terms of figure 3d or figure 3e

with figure 3f. It is easy to find a rule to determine which contribution is dominant. If

k−g in one of figure 3a to figure 3e is at order of λ2, then its interference with figure 3g is

not at leading order of λ. If k+
g in one of figure 3a to figure 3e is at order of λ2, then its

interference with figure 3f is not at leading order of λ. We note that the leading order of the

nominators starts at order of O(λ) or higher. With this rule we can only have the leading

contributions from the following interference terms: figure 3a or figure 3c with figure 3f,

figure 3d or figure 3e with figure 3g, figure 3b with figure 3f if k−g is at order of λ2, and

figure 3b with figure 3g if k+
g is at order of λ2. In these contributions all denominators of

propagators are at order of λ2. Evaluating the nominator of these contributions we find

that only the nominator of figure 3b interfered with figure 3f and that of figure 3a interfered

with figure 3f are at order of λ, other nominators are at order of λ3. Therefore the leading

order contributions come only from the interference term of figure 3b or figure 3c with

figure 3f. We note that the leading contribution comes from the Glauber region of the

momentum of the virtual gluon. Hence its propagator can be approximated as:

i

k2 + iε
≈ i

−k2
⊥ + iε

. (4.4)

From the above analysis, one can see that the diagram figure 3b and figure 3c, which can

generate nonzero SSA, are in correspondence to the diagram figure 1b and figure 1c, which

contribute to Sivers function, respectively.

Again, the absorptive parts of figure 3b and figure 3c can be found with the Cutkosky

cutting rule. They can be represented by the cut diagrams in figure 4. For figure 3b there

is only one physically allowed cut, for figure 3c there are two. Taking the interference of

figure 3b with figure 3f as an example, we have the contribution to the relevant hadronic

tensor as:

W µν |bf =
g4
s

2N2
c

(

fabcTrT aT bT c
) 1

2

∫

d4k

(2π)4
d4kg

(2π)4
(2π)δ(k2

g )δ4(p1 + p2 − q − kg)

· 1

k2 + iε
· −i2πδ((p1 − k − kg)

2 −m2)

(k + kg)2 + iε
· −i2πδ((p2 + k)2 −m2)

(p1 − kg)2 −m2 + iε
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Abs = 1
2

Fig.3c

+1
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Figure 4: The cut diagrams of figure 3b and figure 3c for their absorptive parts.

·
{

Tr

[

1

2
γ5γ ·s⊥(γ ·p1+m)γα(γ ·(p1−kg)+m)γν(γ ·p2−m)γβ(−γ ·(p2+k)+m)γµ

(γ · (p1−k−kg)+m)γρ]·
[

(−kg+k)ρgαβ +(−2k−kg)
αgβρ+(2kg+k)βgρα

]}

. (4.5)

It should noted that one should take complex conjugation of the right part of a cut diagram

in evaluating the absorptive part. With this in mind the black-dotted vertex in the cut

diagram of figure 3b contributes an extra minus sign. Now it is straightforward to perform

the expansion in λ and to pick up the leading contribution. We have then:

W µν |bf = −gµν
⊥ m

4αs

π

N2
c − 1

Nc
4πδ(k2

g )
(p−2 )2k+

g (k+
g − p+

1 )

(p1 − kg)2 −m2
ǫαβ
⊥ s⊥β

· 2

16p+
1 p

−
2

∫

d2k⊥
(2π)2

k⊥α

k2
⊥ + iε

1

(~k⊥ + ~kg⊥)2 + (1 − x)2m2
. (4.6)

For the physical process, the integration over k2
⊥ is bounded from the above because the

energy-momentum conservation. Since we only work at the leading order of q2⊥, we can

integrate k2
⊥ from 0 to ∞. For δ(k2

g) we can write it with the variables x and y as:

δ(k2
g) = δ(2p+

1 p
−
2 (1−x)(1−y)−q2⊥) ≈ δ(1 − y)

2p+
1 p

−
2 (1 − x)

+· · · , q− = yp−2 , q+ = xp+
1 . (4.7)

where the terms represented with · · · will not contribute. Then we have:

W
(1)
T |bf = m

αs

π2

N2
c − 1

Nc

x(1 − x)δ(1 − y)

16q2⊥(q2⊥ + (1 − x)2m2)
ln

(1 − x)2m2

q2⊥ + (1 − x)2m2
. (4.8)
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Figure 5: The diagrams for the twist-3 matrix element in the n ·G = 0 gauge.

There are two cut diagrams for the absorptive part of figure 3c. At leading order of λ

they contributions cancel each other. Hence we have the total W
(1)
T :

W
(1)
T (x, y, q2⊥) = m

α2
s

8π2

N2
c − 1

Nc

x(1 − x)δ(1 − y)

q2⊥(q2⊥ + (1 − x)2m2)
ln

(1 − x)2m2

q2⊥ + (1 − x)2m2
. (4.9)

With the assignment of power of λ in eq. (4.3) we find that the leading order of W
(1)
T is of

λ−4. With the above discussion about denominators of propagators, it seems also possible

that the leading contribution comes from the region of the loop momentum with k⊥ ≪ q⊥,

i.e., the region with the assignment of power of λ:

kµ = (λ2, λ2, λ2, λ2), kµ
g = (k+

g , k
−
g , λ, λ). (4.10)

Performing the power counting and evaluating the nominator in eq. (4.2) for each diagram

we find the leading contributions from this region to W
(1)
T are at order of λ−3. Calculating

these contributions one finds W
(1)
T = 0. This indicates that nonzero contribution from

this region to W
(1)
T starts at order of λ−2. One can also perform similar analysis for other

regions of the loop momentum. The conclusion is that the leading term of W
(1)
T in q⊥

comes from the region specified with eq. (4.3).

The tree-level TMD parton distribution is:

q̄(x, k⊥) = δ(1 − x)δ2(k⊥) + O(αs). (4.11)

Our results in eq. (3.2), (4.9), (4.11) shows that the TMD factorization for W
(1)
T in eq. (2.8)

is verified at leading order. Although all calculations performed here are at leading order,

they are non-trivial. With the factorization at leading order the nonzero transverse mo-

mentum q⊥ are generated by the nonzero transverse momenta of incoming partons which

are q and q̄. Beyond the leading order, the transverse momentum q⊥ can also be generated

by soft gluon radiation, a soft factor should be included in eq. (2.8). This soft factor can

be identified by extending our calculation to the next-to-leading order as shown in TMD

factorization of T -even quantities [11 – 14].

– 11 –



J
H
E
P
1
1
(
2
0
0
8
)
0
9
0

5. Twist-3 matrix element with a quark-state

Now we turn to the twist-3 matrix element. With the single parton state as used for

calculating Sivers function we can also calculate the twist-3 matrix element TF (x1, x2)

defined in eq. (2.12). The calculation can be done easily in the gauge n·G = 0. In this gauge

the gauge links in eq. (2.12) become a unit matrix in the color-space. The leading order

contribution comes from diagrams given in figure 5. A straightforward calculation gives:

TF (x1, x2)=2παsCFm(x2−x1)
2δ(1−x2)

∫

d2k⊥
(2π)2

1

k2
⊥+m2(1−x1)2

+(x1 ⇋x2). (5.1)

The results are U.V. divergent. We can regularize the U.V. divergence with the dimensional

regularization and derive the renormalized TF (x1, x2, µ):

TF (x1, x2, µ) =
αs

2
CFm(x2 − x1)

2δ(1 − x2) ln
µ2

(1 − x1)2m2
+ (x1 ⇋ x2). (5.2)

We note that TF (x1, x2) is zero with x1 = x2 at leading order and the renormalization

scale µ acts effectively as a cutoff of the transverse momentum.

In the collinear factorization of SSA in eq. (2.13), the leading order of the perturbative

functionHc is at αs andHc does not contain explicit µ-dependence. With the calculated TF

and leading order results of the standard parton distribution one can find that the collinear

factorization of SSA with the twist-3 matrix element fails to reproduce the partonic SSA in

eq. (4.9) completely. In eq. (2.13) the contributions can be divided into the contributions

from soft-poles of propagators and hard-poles of propagators. The contribution of soft

poles is proportional to TF (x, x). Because TF (x, x) with our partonic state is zero at

leading order of αs, we can not verify the soft-pole contribution with our results. With our

results one can actually derive a factorized formula with x < 1 and µ = q⊥ as:

W
(1)
T (x, y, q⊥) = − αs

2π2(q2⊥)2

∫

dy1

y1

dy2

y2
q̄(y2)δ(1 − ξ2)

1

(1 − ξ1)+
xTF (x, y1, q⊥), (5.3)

with ξ1 = x/y1, ξ2 = y/y2 and q̄(y2) as the standard antiquark distribution. There is a

certain ambiguity to determine the hard kernel in the above. Because TF (x, x, q⊥) = 0 one

can replace the above +-distribution with 1/(1 − ξ1). The above factorized contribution

only corresponds to a part of the hard-pole contribution in the approach of the collinear

factorization. The above factorization has a clear meaning in physics. In figure 3b the

gluon emitted by the quark is collinear to the quark in the limit q2⊥ ≪ Q2. This collinear

system is factorized into the twist-3 matrix element TF . Our study also indicates that

the relation between q⊥(x, k⊥) and TF (x1, x2) for k2
⊥ ≫ Λ2

QCD, derived formally in [33], is

not satisfied with our partonic results. It will be interesting for a further study to show

how one can find all contributions in the approach of the collinear factorization with some

partonic states.

There is another relation between q⊥ and TF derived formally in [19, 34]:

TF (x, x) =

∫

d2k⊥k
2
⊥q⊥(x, k⊥). (5.4)
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Figure 6: Diagrams for the contributions to TF (x, x).

With our result of Sivers function in eq. (3.2) one can realize that the integral of k⊥ is U.V.

divergent. Therefore the integral without any subtraction is not well-defined. A possible

way to modify the integral meaningful in order to relate Sivers function with TF is to define:

Q⊥(x, b) =

∫

d2k⊥k
2
⊥q⊥(x, k⊥) exp(−i~b · ~k⊥)

= −mα
2
s

16π
(N2

c − 1)x(1 − x) ln2

[

(1 − x)2m2b2e2γ

4

]

+ O(b2), (5.5)

where we have used our result in eq. (3.2) to produce the expression in the second line.

One may expect that TF (x, x) is somehow related to Sivers function in the impact space.

We examine this in the below.

We have seen at leading order TF (x, x) = 0. This function can be nonzero at higher

orders where a gluon can be in the intermediate state, i.e., a gluon crosses the cut in

figure 5. These diagrams are given in figure 6. For x1 = x2 one can easily find that only

the contribution from figure 6c is not zero. The calculation is similar as before. We find

TF (x1, x2)s
ν
⊥|6c = −ig4

s(x2 − x1)p
+ f

abcTrT aT bT c

Nc

∫

d4k

(2π)4
d4kg

(2π)4
(2π)δ(k2

g )

·πδ(x1p
+ − (p+ − k+

g − k+))δ(k+ − (x2 − x1)p
+)ǫµν

⊥

· 1

k2 + iε

1

(k + kg)2 + iε

1

(p − kg) −m2 − iε

1

(p − kg − k)2 −m2 + iε

·8imk⊥µ(−1)ǫαβ
⊥ k⊥αs⊥β

k+
g

k+

(

p+ − k+
g +

ǫ

2
k+

g

)

[

1 + O(k+)
]

. (5.6)

Because we will encounter U.V. divergences we have used the naive γ5-prescription in

d = 4 − ǫ dimension. The term with ǫ in the last line comes from the trace of γ-

matrices. Performing integrations and subtracting U.V. divergence we have for TF (x1, x2)

with x1 = x2 = x:

TF (x, x) = −mα
2
s

4π
(N2

c − 1)(1 − x)x

(

ln2 µ2

(1 − x)2m2
+ ln

µ2

(1 − x)2m2
+
π2

12
+

1

2

)

−mα
2
s

4π
(N2

c − 1)(1 − x)2
(

1

2
+ ln

µ2

(1 − x)2m2

)

. (5.7)

– 13 –



J
H
E
P
1
1
(
2
0
0
8
)
0
9
0

From the above results it is clear that one can in general not write down a factorized

relation like

TF (x, x, µ) = C(x, µ, b)

∫

d2k⊥k
2
⊥q⊥(x, k⊥) exp(−i~b · ~k⊥) + O(b) (5.8)

with the coefficient C(x, µ, b) as a perturbatively calculable coefficient.

6. Summary

SSA is a T -odd effect and it requires helicity-flip interactions. Two factorization approaches

to study SSA has been suggested. One approach is by using TMD factorization which

takes transverse momenta of partons into account. In this approach the T -odd effect

and the effect of helicity-flip interactions are parameterized by Sivers function, which can

consistently be defined with QCD operators. Another approach is to use standard collinear

factorization. In this approach the effect of helicity-flip interactions is parameterized by

the twist-3 matrix element, while the T -odd effect arises from hard scattering of partons.

Sofar, all factorized formulas of SSA in the two approaches have been derived in a rather

formal way in the following sense: One has used the diagram expansion with hadrons and

has divided a given diagram with hadrons into various parts. Among these various parts,

one consists only of partons. In other parts hadrons are involved. These parts represent

nonperturbative effects related to the hadrons and they are parameterized by various parton

density matrices of hadrons. Since a proven factorization is in general a property of QCD,

the above two factorizations should hold by replacing hadrons with partons, if the two can

be proven. The factorization approaches have been not examined with partonic states.

The study of our work presented here is to examine the two factorizations of SSA in

Drell-Yan processes with partonic states in first time. We replace the initial hadrons with

a quark and an antiquark, where the quark is transversely polarized. With the quark state

we can calculate Sivers function and twist-3 matrix element. SSA can be calculated with

the quark-antiquark state. The finite quark mass is introduced to flip helicities. With our

partonic results we can examine the two factorization approaches at leading but nontrivial

order of αs. It turns out that our partonic result of SSA can be factorized within the

approach of TMD factorization, but the results of the proposed factorization formula of

the collinear factorization can not be verified completely with our partonic results. This is

our main result. Using our results we have also examined two formally derived relations

between Sivers function and the twist-3 matrix element. Our partonic results do not satisfy

these two relations. It will be interesting to see how one can derive the formally derived

results in the collinear factorization with some partonic results.

In our work we have taken a quark-antiquark state to replace the initial hadrons in

Drell-Yan processes. We can extend our study to the case of a quark-gluon state to examine

the two approaches. It is worth to point out that corrections of the perturbative coefficient

at higher orders of αs can be studied after the verification of a factorization with partonic

states at leading order. For SSA the verification at leading order is nontrivial as shown in

this work. With our progress to understand SSA in Drell-Yan processes, we are able to
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study SSA in semi-inclusive DIS and other possible processes. Such a study is currently

under the way.
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